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Abstract

We develop compression schemes for EEG signals based on tensor decomposition. We explore various ways to arrange EEG
signals into tensors, and we evaluate several tensor decomposition schemes, including the Tucker decomposition, PARAFAC, and
recent random fiber selection approaches. We compute rate-distortion curves for our proposed tensor-based schemes forEEG
compression. In addition, we investigate how compression affects common EEG statistics, including the power spectrumand
statistical dependence measures (“EEG synchrony”).

I. I NTRODUCTION

Electroencephalograms (EEG) are electrical signals recorded along the scalp or brain surface, generated by firing of neurons
within the brain [1], [2]; those brain signals are instrumental in several areas. In neurology, EEG signals are for example used
to diagnose and study epilepsy and sleep disorders. In that context, EEG signals are often recorded over a short period oftime,
typically 20–40 minutes. However, EEG signals are sometimes continuously recorded over extended periods of time (several
days, weeks, or potentially even months):

• in neurology intensive care units (ICU), e.g., for stroke patients,
• in telemedicine for neurological patients, where EEG is continuously recorded outside the hospital, usually at home.

In recent years, EEG signals are commonly used in Brain-Computer Interfaces (BCI). The latter use brain waves to control
devices such as a wheelchair, computer mouse and/or keyboard. BCI systems may provide a communications channel for the
motion-disabled. At last, but not at least, EEG signals are intensively studied by neuroscientists, who try to gain insight in how
the brain works. Neuroscientists often record EEG signals while subjects are stimulated in a controlled fashion (e.g.,visual
stimulation), or perform certain well-defined tasks (e.g.,memory task).

In telemedicine, intensive care, and other contexts, it is desirable and natural to record scalp EEG over extended periods of
time; this results, however, in massive EEG data sets. Therefore, it is meaningful (and often necessary) to compress theEEG
signals before storage or transmission. As an illustration, let us consider a night-long recording of EEG from a patientwith
sleep disorder. Assuming the EEG is acquired from 21 channels at a rate of several hundreds of samples per second with a
resolution of 16 bits/sample, the EEG recordings would amount to several GBs. Ideally, one would want to monitor patients
over several days, weeks, or perhaps months–especially in the setting of telemedicine; clearly, it is then desirable tocompress
the EEG in order to limit the storage space and bandwidth to reasonable size.

The main challenges for EEG compression are as follows:

• the number of EEG channels can be large (e.g., 256), especially if accurate inverse modeling is needed,
• high sampling rate may be required (several kHz in the case ofcortical EEG; several hundred Hz for scalp EEG), to capture

spikes and high-frequency oscillations in the EEG
• high-quality (lossless or near lossless) reconstruction of the EEG is often needed [3]. However, since EEG is highly

stochastic and non-stationary, lossless or near lossless EEG compression suffers from low compression performance.
• For telemedicine applications, compression algorithms should operate in real-time while consuming as little power as

possible.

In this study, we utilize tensor decomposition methods to compress EEG signals. We explore various ways to arrange
EEG signals into tensors, and we evaluate several tensor decomposition schemes [4], [5], including the Tucker decomposition,
PARAFAC, and recent random fiber selection approaches (e.g., [6]). We compute rate-distortion curves for our proposed tensor-
based schemes for EEG compression. In addition, we investigate how compression affects common EEG statistics, including
the spectrum and statistical dependence measures (“EEG synchrony”). Such statistics are commonly used in neurology and in
BCI systems.

In this abstract, we present our preliminary results. More detailed results will be presented at the workshop. This abstract is
organized as follows.

II. REVIEW OF LITERATURE

Signals can be compressed by exploiting correlations in those signals. Multiple signals, such as EEG recordings, can be
jointly compressed by utilizing the correlation between those signals, besides the correlation within each signalindividually. A



variety of techniques have been developed for compressing EEG signals; we refer to [7] for an excellent review on lossless
EEG compression.

A. Auto-regressive models

EEG signals are often modeled as auto-regressive (AR) processes, similarly as speech signals. An AR predictor is a non-
recursive system that predicts the current signal sample byusing a weighted sum of a pre-specified number of previous samples.
Perfect reconstruction is made possible by transmitting the prediction error or residuals. Various AR predictors havebeen
developed: linear AR predictor, recursive least squares and adaptive neural network predictors. Further refinements include
context-based bias cancellation [3] and detailed prediction residual modeling [8], which improve compression performance at
the expense of computational complexity.

B. Transformations

Before compressing signals, it can be fruitful to first transform them in an other domain. In particular, one aims to find a
compact representation of the signals. For example, the wavelet transform is commonly used, since it often leads to sparse
time-frequency representations. If many of the wavelet coefficients are close to zero, one can set them to zero, and storeonly
the most significant non-zero coefficients; this leads to a compressed representation, at the expense of minor residual errors.
Common transformations include discrete cosine transform[7], subband transform, wavelet transform, wavelet-packet transform,
and integer lifting wavelet transform [9], [7].

C. From single-channel to multi-channel compression

The methods discussed above are single-channel compression schemes, and they remove only the intra-channel correlation.
Multichannel compression algorithms compress all EEG channels simultaneously, by exploiting both inter-channel andintra-
channel correlation. Various approaches are possible: forexample, one can extend univariate AR prediction to multivariate AR
prediction, although such approach does not yet seem to havebeen followed for EEG compression. In contrast, the integer
Karhunen-Loève transform and its sub-optimal variation [10] have been used.

D. Compressed sensing

The emerging field of compressed sensing opens the way to acquire sparse signals with very few random measurements, well
below the Nyquist rate. Signals could be acquired directly in the compressed form and reconstructed for subsequent analysis;
sparse acquisition of EEG signals is quite attractive for telemedicine. Compressed sensing of EEG has been explored in afew
recent studies [11], [12].

E. Discussion

A large number of studies have been devoted to the compression of EEG. However, most of them consider the compression of
single EEG channels. On the other hand, multi-way analysis has been applied intensively to EEG signals (especially non-negative
decompositions of time-frequency maps), mostly for extracting features (see, e.g., [13], [14]); those studies seem tosuggest
that multi-way analysis may be effective for EEG compression as well, however, many issues still need to be systematically
explored. We are currently conducting such systematic study, and in the following, we will present our preliminary results; we
will also outline ongoing research.

III. T ENSORDECOMPOSITIONS FORCOMPRESSINGEEG

Tensors or multi-way arrays provide a natural representation for multi-dimensional data. Tensor decomposition models are
important tools for feature extraction and classification since they capture the dependencies in higher-order data-sets. They have
found application in many areas, e.g., psychometrics, chemometrics, and signal processing [4], [5]. Here, we explore tensor
decomposition schemes for compressing multi-channel EEG signals.

A. Tensor formation

Multichannel EEG signals are arranged in the form of a three-way tensor. LetX ∈ R
I×J×K , represent the tensor. So far, we

have explored to methods to form a tensor from multi-channelEEG signals:

• Time tensor : Single-channel EEG signals are arranged to form a matrix [9]. This matrix is then stacked to form a three-
way tensorX ∈ R

N×N×M , whose frontal slices represents signal from a particular channel. It can be expressed by the
following relationship:

X::k = matrix(EEG(k)(1 : N2)) ∀ k = 1, . . . , M, (1)

whereN × N is the dimension of the frontal slice,M the number of channels,EEG(k) the EEG from channelk and
matrix() is function that arranges EEG in the form of a matrix; the entries are filled starting at the top left-hand side, from
left to right on the odd rows, and from right to left on the evenrows.

• Wavelet tensor : Wavelet tensor is derived from the time tensorX , by subjecting each frontal slice to 2-D discrete wavelet
transform. The relationship between the wavelet-tensorXw ∈ R

N×N×M and time tensorX is given by:

X
w
::k = 2D-DWT(X::k) ∀ k = 1, . . . , M. (2)

The wavelet decomposition improves the sparsity of the frontal slices, which may lead to more effective tensor decompo-
sitions.



In both tensor constructions, the mode-1 (column) fibres represents the samples from the same channel displaced byN -samples.
Mode-2 (row) fibres represents the adjacent samples from thesame channel, whereas the samples along the mode-3 fibres
(tubes) represents the samples from adjacent channel at thesame time instant. One can expect strong correlations between the
tensor entries along mode-2 and mode-3 fibres, but less so along mode-1 fibres, due to the non-stationary nature of EEG.

B. Tensor decomposition and compression

In this abstract, we only consider the Tucker decomposition: the tensorX is decomposed into a core tensorG ∈ R
P×Q×R

and factor matricesA ∈ R
N×P , B ∈ R

N×Q andC ∈ R
M×R. (We refer to [4], [5] for a review of tensor decompositions.We

use the same notation as in [4]). The factor matrices arebasis matricescapturing the variation along the three modes and the
core tensor captures the interaction between them. The Tucker decomposition is expressed mathematically by:

X = G ×1 A ×2 B ×3 C + E = X̃ + E (3)

whereX̃ is the Tucker decomposition ofX andE represents the approximation error.

C. Compression Performance measures

The compression performance is measured using two parameters: compression ratio and percent-root mean square differ-
ence (PRD). The compression ratio is defined as the ratio of number of entries in the original tensor and the number of entries
in the compressed tensor:

CR =
numel(X )

numel(G) + numel(A) + numel(B) + numel(C)
, (4)

wherenumel() is the number of entries in a matrix or tensor. Note that for tensor constructions, the number of entries in the
original tensornumel(X ) is equal to the size of the EEG data set, i.e., number of channels times the length of the EEG signals.

The other important performance measure is the percent-root mean square difference (PRD) between the original and the
reconstructed signal:

PRD(%) =

√

√

√

√

∑N2

i (x(i) − x̃(i))2
∑N2

i x(i)2
× 100. (5)

The latter quantifies the distortion between the original tensorX and the Tucker decompositioñX .

IV. RESULTS

We have analyzed 64-channel EEG from Physiobank EEG-MMI database [15]. The EEG was recorded at a sampling rate of
80Hz. We considered EEG segments that are 256 and 1024 samples long, and the size of the tensorX is chosen as16×16×64
and32 × 32 × 64 respectively. We first computed the Tucker decomposition for all possible sizes of the core tensorG. Next,
for fixed compression ratios (CR) we chose the core tensor size that minimizes the distortion (PRD). As a benchmark, we have
applied singular value decomposition (SVD) as well: the EEGsignals are organized in a matrix where each row contain the
EEG signal of one channel; SVD is applied to that matrix, and the number of retained singular vectors is varied from 1 to
M , yielding different compression ratios and correspondingPRDs. Our preliminary results are summarized in Fig. 1. We have
obtained those results by 4-fold crossvalidation. Indeed,since the problem of selecting the size of the core tensor is essentially
a model selection problem, crossvalidation is necessary toassess the generalization performance. The tensor-based compression
schemes clearly outperform SVD, especially at large compression ratios. The tensor construction does not seem to be matter
much: time tensor and wavelet tensors lead to about the same results. Interestingly, the compression performance is thebest for
the long EEG segments (1024 samples); that is most clearly the case for SVD, and much less pronounced for the tensor-based
compression schemes. The latter is good news: it implies that good compression performance can be achieved even with fairly
short EEG segments; as a result, the computational complexity of the tensor decomposition can be kept small, and hence, the
multi-way EEG compression scheme has low complexity. Examples of reconstructed EEG signals are shown in Fig. 2.

We have also computed the relative error on specific EEG statistics, including power spectrum and correlation matrix. Similar
trends as in Fig. 1 can be observed (not shown here).

V. D ISCUSSION AND CONCLUSION

Conventional multi-channel compression schemes usually exploit the intra-channel and inter-channel correlation inseparate
stages; tensor-based compression schemes capture intra-channel and inter-channel correlations simultaneously, which is a more
elegant approach that seems to yield good compression performance. In the near future, we will compare the proposed method
additional multi-channel compression schemes, besides SVD.

We are currently exploring extensions of the proposed approach. For example, the error tensorE may be further decomposed
by another Tucker decomposition. Alternatively, other compression techniques may be applied to the cores tensor and factor
matrices, e.g., arithmetic coding. Such additional compression stages try to exploit remaining correlations in the core tensor and
factor matrices, and/or error tensor.

So far, we have only obtained results for Tucker decomposition. We are now experimenting with other tensor models, including
PARAFAC [4], [5] and approximations based on partial sampling [6]. We are also considering unequal error protection; itis
well-known that the high frequency components in EEG signals are the most contaminated, since they are usually the weakest.
Therefore, we can allow higher approximation error for the entries in the wavelet tensor corresponding to high-frequency EEG
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Fig. 1. Comparison of EEG compression scheme based on SVD andTucker decomposition. In SVD the number of singular vectorsis increased to achieve the
desired distortion; in Tucker decomposition the size of core tensor is optimized. Results are shown for tensorX of size16× 16× 64 (left) and32× 32× 64

(right).
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Fig. 2. Original and reconstructed EEG signal, and error signal for the time tensor model for PRD = 5% (left) and 10% (right).

components. At the same time, we would like to keep the approximation errors for the low-frequency entries as small as possible.
At last, we are at present analyzing several additional datasets, from healthy subjects and from epilepsy and AD patients. Results
from our ongoing research will be presented at the workshop.
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